حکیم غیاث‌الدین ابوالفتح عُمَر بن ابراهیم خیام نیشابوری (زادهٔ ۲۸ اردیبهشت ۴۲۷ خورشیدی - درگذشته ۱۲ آذر ۵۱۰ خورشیدی) به خیامی و خیام نیشابوری هم نامیده شده‌است. او از ریاضی‌دانان، ستاره‌شناسان و شُعرای بنام ایران در دورهٔ سلجوقی است. گرچه پایگاه علمی خیام برتر از جایگاه ادبی او است و دارای لقب حجةالحق بوده‌است، ولی آوازهٔ وی بیشتر به واسطهٔ نگارش رباعیاتش است که شهرت جهانی دارد. افزون بر آنکه رباعیات خیام را به اغلب زبان‌های زنده ترجمه نموده‌اند، ادوارد فیتزجرالد  رباعیات او را به زبان انگلیسی ترجمه کرده‌است که مایهٔ شهرت بیشتر وی در مغرب‌زمین گردیده‌است.
از وی هم‌اکنون بیش از ۱۰۰ رباعی برجای مانده‌است.


آرامگاه ابدی خیام نیشابوری، شاعر و دانشمند بزرگ ایرانی

یکی از برجسته‌ترین کارهای وی را می‌توان اصلاح گاهشماری ایران در زمان وزارت خواجه نظام‌الملک، که در دورهٔ سلطنت ملک‌شاه سلجوقی (۴۲۶-۵۹۰ هجری قمری) بود، دانست. وی در ریاضیات، علوم ادبی، دینی و تاریخی استاد بود. نقش خیام در حل معادلات درجه سوم و مطالعات‌اش دربارهٔ اصل پنجم اقلیدس نام او را به عنوان ریاضی‌دانی برجسته در تاریخ علم ثبت کرده‌است.
عمر خیام در سده پنجم هجری در نیشابور زاده شد. فقه را در میانسالی در محضر امام موفق نیشابوری آموخت؛ حدیث، تفسیر، فلسفه، حکمت و اختر شناسی را فراگرفت.
خیام به دعوت سلطان جلال‌الدین ملکشاه سلجوقی و وزیرش نظام الملک به اصفهان می‌رود تا سرپرستی رصدخانهٔ اصفهان را به‌عهده گیرد. او هجده سال در آن‌جا مقیم می‌شود. به مدیریت او زیج ملکشاهی تهیه می‌شود و در همین سال‌ها (حدود ۴۵۸) طرح اصلاح تقویم را تنظیم می‌کند. تقویم جلالی را تدوین کرد که به نام جلال‌الدین ملکشاه شهره‌است، اما پس از مرگ ملکشاه کاربستی نیافت.در همین سال‌ها مهم‌ترین و تأثیرگذارترین اثر ریاضی خود را با نام رساله فی شرح مااشکل من مصادرات اقلیدس را می‌نویسد و در آن خطوط موازی و نظریهٔ نسبت‌ها را شرح می‌دهد. پس از درگذشت ملکشاه و کشته شدن نظام‌الملک، خیام مورد بی‌مهری قرار گرفت و کمک مالی به رصدخانه قطع شد بعد از سال ۴۷۹ اصفهان را به قصد اقامت در مرو که به عنوان پایتخت جدید سلجوقیان انتخاب شده بود، ترک کرد. احتمالاً در آن‌جا میزان الحکم و قسطاس المستقیم را نوشت. رسالهٔ مشکلات الحساب (مسائلی در حساب) احتمالاً در همین سال‌ها نوشته شده‌است.غلامحسین مراقبی گفته‌است که خیام در زندگی زن نگرفت و همسر بر نگزید.

رباعیات
با کنار گذاشتن رباعایت تکراری ۵۷ رباعی به دست می‌آید.  این ۵۷ رباعی که تقریباً صحت انتساب آنها به خیام مسلم است کلیدی برای تصحیح و شناختن سره از ناسره به دست مصححان می‌دهد. با کمک این رباعی‌ها زبان شاعر و مشرب فلسفی وی تا حد زیادی آشکار می‌شود. زبان خیام در شعر طبیعی و ساده و از تکلف به دور است و در شعر پیرو کسی نیست.  وانگهی هدف خیام از سرودن رباعی شاعری به معنی متعارف نبوده‌است بلکه به واسطهٔ داشتن ذوق شاعری نکته‌بینی‌های فلسفی خود را در قالب شعر بیان کرده‌است
شهرت خیام به عنوان شاعر مرهون ادوارد فیتزجرالد انگلیسی‌است که با ترجمهٔ شاعرانهٔ رباعیات وی به انگلیسی، خیام را به جهانیان شناساند.
نخستین تصحیح معتبر رباعیات خیام به دست صادق هدایت انجام گرفت. وی از نوجوانی دلبستهٔ خیام بود تدوینی از رباعیات خیام صورت داده بود. بعدها در ۱۳۱۳ آن را مفصل‌تر و علمی‌تر و با مقدمه‌ای طولانی با نام ترانه‌های خیام به چاپ رسانید. تصحیح معتبر بعدی به دست محمد علی فروغی در ۱۳۲۰ به انجام رسید.

ریاضیات
پیش از کشف رساله خیام در جبر، شهرت او در مشرق‌زمین به واسطه اصلاحات سال و ماه ایرانی و در غرب به واسطه ترجمه رباعیاتش بوده‌است. اگر چه کارهای خیام در ریاضیات (به ویژه در جبر) به صورت منبع دست اول در بین ریاضیدانان اروپایی سدهٔ ۱۹ میلادی مورد استفاده نبوده‌است، می‌توان رد پای خیام را به واسطه طوسی در پیشرفت ریاضیات در اروپا دنبال کرد. قدیمی‌ترین کتابی که از خیام اسمی به میان آورده و نویسندهٔ آن هم عصر خیام بوده، نظامی عروضی مؤلف «چهار مقاله» است. ولی او خیام را در ردیف منجمین ذکر می‌کند و اسمی از رباعیات او نمی‌آورد. با این وجود جورج سارتن با نام بردن از خیام به عنوان یکی از بزرگ‌ترین ریاضیدانان قرون وسطی چنین می‌نویسد:
خیام در مقام ریاضی‌دان و ستاره‌شناس تحقیقات و تالیفات مهمی دارد. از جمله آنها رسالة فی البراهین علی مسائل الجبر و المقابله است که در آن از جبر عمدتاً هندسی خود برای حل معادلات درجه سوم استفاده می‌کند. او معادلات درجه دوم را از روش‌های هندسی اصول اقلیدس حل می‌کند و سپس نشان می‌دهد که معادلات درجه سوم با قطع دادن مخروط‌ها با هم قابل حل هستند.  برگن معتقد است که «هر کس که ترجمهٔ انگلیسی [جبر خیام] به توسط کثیر  را بخواند استدلالات خیام را بس روشن خواهد یافت و، نیز، از نکات متعدد جالب توجهی در تاریخ انواع مختلف معادلات مطلع خواهد شد.» مسلم است که خیام در رساله‌هایش از وجود جوابهای منفی و موهومی در معادلات آگاهی نداشته‌است و جواب صفر را نیز در نظر نمی‌گرفته است
یکی دیگر از آثار ریاضی خیام رسالة فی شرح ما اشکل من مصادرات اقلیدس است. او در این کتاب اصل موضوعهٔ پنجم اقلیدس را دربارهٔ قضیهٔ خطوط متوازی که شالودهٔ هندسهٔ اقلیدسی است، مورد مطالعه قرار داد و اصل پنجم را اثبات کرد. به نظر می‌رسد که تنها نسخه کامل باقیمانده از این کتاب در کتابخانه لیدن در هلند قرار دارد.
خیام به تحلیل ریاضی موسیقی نیز پرداخته‌است و در القول علی اجناس التی بالاربعاء مسالهٔ تقسیم یک چهارم را به سه فاصله مربوط به مایه‌های بی‌نیم‌پرده، با نیم‌پردهٔ بالارونده، و یک چهارم پرده را شرح می‌دهد.

مهم‌ترین دست‌آوردهای علمی او:
- ابداع نظریه‌ای دربارهٔ نسبت‌های هم‌ ارز با نظریهٔ اقلیدس.
- «در مورد جبر، کار خیام در ابداع نظریهٔ هندسی معادلات درجهٔ سوم موفق‏ترین کاری است که دانشمندی مسلمان انجام داده‌است.»
- او نخستین کسی بود که نشان داد معادلهٔ درجهٔ سوم ممکن است دارای بیش از یک جواب باشد و یا این که اصلاً جوابی نداشته باشند.«آنچه که در هر حالت مفروض اتفاق می‌افتد بستگی به این دارد که مقاطع مخروطی‌ای که وی از آنها استفاده می‌کند در هیچ نقطه یکدیگر را قطع نکنند، یا در یک یا دو نقطه یکدیگر را قطع کنند.»
- «نخستین کسی بود که گفت معادلهٔ درجهٔ سوم را نمی‌توان عموماً با تبدیل به معادله‌های درجهٔ دوم حل کرد، اما می‌توان با بکار بردن مقاطع مخروطی به حل آن دست یافت.»
- «در نیمهٔ اول سدهٔ هیجدهم، ساکری اساس نظریهٔ خود را دربارهٔ خطوط موازی بر مطالعهٔ همان چهارضلعی دوقائمهٔ متساوی‌الساقین که خیام فرض کرده بود قرار می‌دهد و کوشش می‌کند که فرضهای حاده و منفرجه‌بودن دو زاویهٔ دیگر را رد کند.»
- به خاطر موفقیت خیام در تعیین ضرایب بسط دو جمله‌ای (بینوم نیوتن)که البته تا سده قبل نامکشوف مانده بود و به احترام سبقت وی بر اسحاق نیوتن در این زمینه در بسیاری از کتب دانشگاهی و مرجع این دو جمله‌ای‌ها «دو جمله‌ای خیام-نیوتن» نامیده می‌شوند.

نوشته شده در تاریخ یکشنبه 20 تیر 1389    | توسط: علی    | طبقه بندی: آشنایی با بزرگان (پس از اسلام)،     | نظرات()